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Abstract :  Flow past a square cylinder has been studied extensively for over a century, because of its interesting flow features and 

practical applications. This problem is of fundamental interest as well as important in many engineering applications. The characteristics 

of flow around a square cylinder placed at symmetric condition are governed by the Reynolds number (Re). In the present study two 

dimensional simulations of flow past a square cylinder have been carried out for a Reynolds number of up to 160. The modeling of the 

problem is done by GAMBIT 2.3 preprocessing software. The computations are carried out using a commercial CFD solver, FLUENT 

6 .3, which uses a finite volume approach to discretise governing and model equations for incompressible laminar flow. The average 

axial and transverse velocities downstream of the cylinder show good matching with the experimental results. The Recirculation Length, 

velocity profile, Isotherms pattern and Velocity contours have been plotted and compared with previous studies available in literature. 

The result shows reasonably good matching.  

 

IndexTerms – Heat Transfer, Convection, Reynolds’s number. 

________________________________________________________________________________________________________ 

 

1. INTRODUCTION 

The phenomenon of flow separation and bluff body wakes has long been intensively studied because of its fundamental significance in 

flow physics and its practical importance in aerodynamic and hydrodynamic applications. The flow of fluid past cylinders of various cross 

sections represents an idealization of several industrially important applications. It is readily acknowledged that a systematic study of the 

flow past a single cylinder not only provides valuable insights into the nature of flow, but also serves as a useful starting point to 

understand the flow in real-life multi-cylinder and other applications such as flow past pipelines near the ground, flow past building 

construction, suspension bridge, heat transfer enhancement in heat exchangers and forced-air cooling of board-mounted electronic 

components etc. 

The Reynolds’s number represents the ratio of inertial forces to viscous forces of flow thus consequently quantifies the relative 

importance of these two types of forces for given flow conditions.     
   

 
 Where V is the air velocity and B is the obstacle width, 

Reynolds number is used to characterize different flow regimes, such as laminar or turbulent flow At large Reynolds numbers, the inertia 

forces, which are proportional to the density and the velocity of the fluid, are large relative to the viscous forces, and thus the viscous 

forces cannot prevent the random and rapid fluctuations of the fluid. 

 

1.1 Computational Fluid Dynamics (CFD)                  

CFD is the systematic application of computing systems and computational solution techniques to mathematical models formulated to 

describe and simulate fluid dynamic phenomena.CFD is part of computational mechanics, which in turn is part of simulation techniques. 

Simulation is used by engineers and physicists to forecast or reconstruct the behavior of an engineering product or physical situation under 

assumed or measured boundary conditions (geometry, initial states, loads, etc.). A variety of reasons can be cited for the increased 

importance simulation techniques have achieved in recent years:  

 Need to forecast performance  

 Cost and/or impossibility of experiments  

 The desire for increased insight  

 Advances in computer speed and memory  

Advances in solution algorithms 

2 Problem Formulation and Turbulence Modeling 

2.1 Statement of Problem:- In the present problem 2-D simulations of the unconfined flow past  a square cylinder with forced convection 

heat transfer have been carried out up to Reynolds number 160 for different cylinder widths (B =1, 2 & 3).  The dimensions of the geometry 

are 

 B   = width of square cylinder  

 L   = length of domain  

 La = distance between the inlet and front surface of square cylinder 

 Lt   = distance between the exit and rear surface of square cylinder 

 H   = height of the domain 
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Fig 3.1 Geometrical model of flow configuration 

 

 Forced Convection 

La / B Lt / B L / B H / B 

8.5 16.5 26 20 

Table 2.1 Computational Domain Parameters  

 

2.2 Boundary Condition: Boundary conditions specify the flow and thermal variables on the boundaries of the physical model. They are, 

therefore, a critical component of simulations and it is important that they are specified appropriately. The computational domain uses 

following boundary conditions. The following boundary conditions are assigned in FLUENT.                 

                   

Zone Assigned Boundary Type 

INLET VELOCITY INLET 

OUTLET PRESSURE OUTLET 

SQUARE CYLINDER WALL(NO-SLIP) 

TOP SURFACE SYMMETRY 

BOTTOM SURFACE SYMMETRY 

 

Boundary conditions (Table -3.2) 

 

Inlet Boundary Condition 

Since the flow is purely one dimensional hence no flow exists in y and z direction. 

 u = uin  , v = w = 0, Pinl = Patm = 1.03215 bar, u =0.0007338 m/s, Tatm = T∞ = 300 K  

 

Outlet Boundary Condition 

 

In fluent outlet condition is taken as pressure outlet. 

                       

Boundary Condition at the square Cylinder Surface 

The no-slip boundary condition is applied on the square cylinder surface. 

                                           (u = v = w = 0), T = 400 K  

Boundary Condition at the Top and Bottom 

The confining surfaces at y = ± H/2 are modeled as the symmetry condition. 

 

2.3 Governing Equation: 

The governing equations for this problem are the two dimensional continuity and Navier-Stokes momentum equations. 

Continuity Equation. 

This equation states that mass of a fluid is conserved. 

 

Rate of increase of mass in            Net rate of flow of mass fluid 

element                                        =          into fluid element 

  

For time dependent.3-D equation is  
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For 2-D, incompressible and steady flow 
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X- Momentum Equation 

Momentum equations are based on Newton’s second law which states that, the rate of change of momentum equals the sum of forces on 

fluid particle. Time dependent and 3-d momentum in x-direction is 
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Where V= ui+vj+wk is velocity vector field, f denotes body force per unit mass,   
  

as its x component and  = 
 

 
  

For 2-D, incompressible, steady and with no body forces 
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Y- Momentum Equation  

Time dependent and 3-d momentum in y-direction is 
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(2.5)                                              

Where    denotes y-component of body force (f) per unit mass. 

For 2-D, incompressible, steady and with no body forces 
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Energy Equation 
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3.  Discretised Equations for Solution Algorithm 

It is common practice to subdivide the computational domain into number of sub domains or elements such that separate profile 

assumption can be made with each sub domain. In order to solve the non- linearity associated with fluid flow and energy equations the 

pressure-velocity linkage can be resolved by adopting an iterative solution strategy such as SIMPLE / SIMPLEC algorithm. A guessed 

pressure field is used to solve the momentum equation and pressure correction equation field which is in turn used to update the velocity and 

pressure field. To start the iteration process we use initial guess for velocity and pressure fields. As the algorithm proceeds our aim is to 

progressively to improve these guessed fields. The process is iterated until the convergence of velocity and pressure fields are obtained. 

                     

 
Fig. 3.1 Grid Arrangement for Flow Calculation in Two Dimensions 

 

 

The discretised momentum equations in x direction: 

   
  JiJiJIJInbnbJiJi bAPPuaua ,,,,1,,              (4.1)                                                           
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The discretised momentum equation for y direction 

    
  jIjIJIJInbnbjIjI bAPPvava ,,,1,,,                                                                     (4.2) 

 

 

 
Fig. 3.2 Control Volume and Its Neighbouring Velocity Components 

3.1 The SIMPLE Algorithm 

The SIMPLE algorithm stands for Semi–implicit Method for Pressure Linked Equations. This is essentially a guess and correct procedure 

for the calculation of pressure on staggered grid for the discretised momentum equations. This pressure-velocity Coupling algorithm uses a 

relationship between velocity and pressure corrections to enforce mass conservation and to obtain the pressure field. 

  JiJiJIJInbnbJiJi bAPPuaua ,,,,1,,    
This method can be explained with the two dimensional steady state laminar flow equations. The guessed pressure for the above equations 

is p* while the velocities are u* and v* as follows. 

  JiJiJIJInbnbJiJi bAPPuaua ,,,
*

,1
**

,
*

,                                                                  (3.1) 

  jIjIJIJInbnbjIjI bAPPvava ,,,
*

1,
**

,
*

,                                                                               (3.2) 

Now the correction    ,    and    may be introduced as (correction formulae) 
'* ppp                                             (3.3) 

'* uuu                                                        (3.4) 

'* vvv                                                                                 (3.5) 

Where P=correct pressure field and    is =guessed pressure field.  

Substitution of correct pressure field p into momentum equations yield correct velocity field.  

Subtraction of equations (4.1) and (4.2) from (4.3) and (4.4) respectively would give us 

   
     JiJIJIJIJI

nbnbnbJiJiJi

Apppp

uuauua

,

*

,,

*

,1,1

**

,,,








                                 (3.6) 

                                                                                                                                                                                                   

   
     jIJIJIJIJI

nbnbnbJiJiJi

Apppp

vvavva

,

*

,,

*

1,1,

**

,,,








                                 (3.7)                                   

Using correction formulas the equation (4.8) and (4.9) may be written as: 

  JiJIJInbnbJiJi Appuaua ,

'

,

'

,1

''

,,                                                                                      (3.8)                                                    

  jIJIJInbnbjiji Appvava ,

'

,

'

1,

''

,,                                            (3.9)  

In order to simplify the above equations the two approximations  
''

nbnbnbnb vaandua   
are dropped. The omissions of these terms are the main approximations of SIMPLE algorithm. We obtained 

 '

,

'

,1,

'

, JIJIJiJi ppdu                                                                  (3.10) 

 '

,

'

1,,

'

, JIJIjIjI ppdv                                                                (3.11) 
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Where       
    

    
     and            

    

    
 

So far we have considered momentum equations but velocity field also subjected to constraint that it should also satisfy continuity 

equations. The continuity equation for the control volume is 

          0
,1,,,1





 jI

vA
jI

vA
Ji

uA
Ji

uA                                                               (3.12) 

Substitution of corrected velocities of equations into discretised continuity equations gives:

      
       0'
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Identifying the coefficient of p’ it may be written as  

'

,

'

1,1,

'

1,1,

'

,1,1

'

,1,1

'

,,

JIJIJI

JIJIJIJIJIJIJIJI
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                                                      (3.13)                                                                                                                                        

 
Fig. 4.6 Scaler Control Volume Used For Discretisation of Continuity equation 

 

Where 

 

JIa ,1  

        

JIa ,1  

                  

1, JIa  

               

1, JIa  

 
'

,JIb  

 

  JidA ,1  

 

  JidA ,  

 

  1, jIdA

 

 

  JidA ,  

 

        1,

*

,

*

,1

*

,

*

  jIjIJiJi AvAvAuAu   

 

The above equation (4.16) represents the discretised continuity equation as an equation for pressure correction p’. By solving above 

pressure correction equation the correct pressure field may be known and correspondingly substitute pressure field into continuity equation 

would give us the correct velocity field. The omission of the terms such as   '

nbnbua  in the derivation does not affect much the final 

results. Because the pressure correction and velocity corrections will be zero in a converged solution giving p*=p and u*=u. 

3.2 Sequence of Operation for the SIMPLE Algorithm 

 

       1: Guess the pressure filed p* 

       2: Solve the momentum equations to obtain u* and v* 

       3: Solve the p’ equation 

       4: Calculate the p by adding p’ to p* 

       5: Calculate the u and v from velocity correction formula. 

       6: Treat the corrected pressure p as new guessed pressure p*.return to  

       Step 2 and repeat the whole procedure until a converged solution is obtained. 
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3.3 The SIMPLE Algorithm 

The SIMPLE algorithm follows the same step as he SIMPLE algorithm, with the difference that the momentum equations are manipulated so 

that the SIMPLEC velocity correction equations omit terms that are less significant than those omitted in simple. 

The u velocity correction equation of SIMPLEC is given by  

                            '

,

'

,1,

'

, JIJIJiJi ppdu          

Where      

                                          
    

     ∑   

                  

Similarly the modified v- velocity correction equation is     

                           '

,

'

1,,

'

, JIJIjIjI ppdv    

Where      

                                         
    

     ∑   

      

The discretised pressure correction equations are same the same as in SIMPLE except that the d-terms .the sequence of operations of the 

SIMPLEC algorithm is identical to that of SIMPLE. 

 

 

 

 
 

Fig. 4.7 Flow chart for simple algorithm 

 

4. RESULTS AND DISCUSSION 
In the present study, two dimensional numerical simulation of flow past a square cylinder has been carried out for various cylinder width 

(B=1, 2 & 3) & Reynolds number and results are compared with the experimental and numerical data available in the literature. The flow 

features are represented with the help of Recirculation Length. 

The recirculation length is defined as the stream-wise distance from the trailing end of the square cylinder to the re-attachment point 

along the wake centerline. The location of the re-attachment point is determined computationally by monitoring the streamwise velocity 

along the streamwise centerline of the cylinder and moving downstream till it changes its sign from negative to positive. Figures 5.1, 5.2 & 

5.3 show the computed values of recirculation length for the square cylinder for various cylinder widths (B=1, 2 & 3) compared with Atul et 

al. (2000) is: 

                                                            RL=0.0672 x Re 
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Fig. 5.1 Variation of Recirculation Length at B=1 

 

 
 

Fig. 5.2 Variation of Recirculation Length at B=2 

 

 
 

Fig. 5.3 Variation of Recirculation Length at B=3 

 

From the figure 5.1 it is cleared that the present value of Recirculation length is approaches to the calculated value from Atul et al. (2000) 

and whereas in case of B=2 & 3 the present value is greater or lower respectively. 

 

4.1 Conclusion 

Numerical investigation are conducted on unconfined flow past a square cylinder with forced convection heat transfer for different 

cylinder widths (B=1, 2 & 3) and 1≤Re≤160. As the cylinder width and Reynolds number changes, a significant change in the properties of 

flow is observed. The flow is steady for Re≤40 and become unsteady when Re≥50 and transition occurs at 40≤Re≤50. The sequence of 

different events involved in shedding at Re≥100 is shown clearly.  

 The correlation between non dimensional recirculation length and Reynolds number has been shown for 1≤Re≤40 in the steady flow 

regime. The result show good match with the available numerical and experimental data. As the Reynolds number increase the recirculation 
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length increases behind the cylinder. Change in the cylinder width also affects the recirculation length. As the cylinder width increases the 

length of recirculation increases.  
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